

Module 3:

Chemical and Physical Characteristics of Ethanol and Hydrocarbon Fuels

Upon the completion of this module, participants should be able to describe the chemical & physical differences between gasoline, ethanol & ethanol-blended fuels.

Ę

- Characteristics of gasoline
- Characteristics of ethanol
- Conditions under which ethanol-blended fuels will retain chemical characteristics different than an all hydrocarbon fuel

Characteristics of Gasoline

- Insoluble in water
- Produced from crude oil
- Harmful effects after long-term & high-level exposure
- Smoke from burning gasoline is black & has toxic components
- Significant hazard is flammability:
 Fairly narrow range of flammability
 - 1.4% 7.6% by volume in air

Ę

Gasoline Production

Characteristics of Ethanol

- Renewable fuel source produced by fermentation & distillation processes
- Most common feedstock in U.S. is corn
 - Other feedstock include corn cobs, corn stover, switchgrass, etc.
- Ethanol used with motor fuels must be denatured with 2% 5% natural gasoline or similar hydrocarbon before transportation to bulk storage facilities
- Denaturant has minimal effects on characteristics except for flash point
 - The addition of denaturant further depresses the flash point

Ethanol Production

Characteristics of Denatured

Fuel Ethanol

Polar solvent

- Miscible in water
- Greatest hazard as motor fuel component is flammability
 - Wider flammable range than gasoline:
 - 3% 19% by volume in air

Chemical Properties Comparison 🏟 🏟

Property	Gasoline	Denatured Fuel Ethanol
Flash Point	- 45ºF	- 5 ⁰ F
Auto Ignition Temp	530 - 853ºF	709 ⁰ F
Specific Gravity	0.72 – 0.76	0.79
Vapor Density	3 - 4	1.5
Vapor Pressure	8 - 15psi	~3psi
Boiling Point	100 - 400ºF	165 - 175ºF
Flammable Range	1.4% - 7.6%	3% - 19%
Smoke Characteristics	Black	Slight
Solubility	Trace	High

Considerations for Ethanol Fires

- In undenatured/ neat form, the flame & smoke are not easily visible
- In denatured form, the flame is orange and there is minimal smoke but both are visible
- Large amounts of water required to dilute ethanol to no longer support combustion
 - Will continue to burn at five parts water to one part ethanol (5:1 ratio or 500% dilution)

Invisible Flames - Ethanol

Thermal imaging

- Fires involving a high percentage of ethanol can burn with little to no smoke generation and visible flame
- The use of a thermal imaging camera is highly recommended

Characteristics of

Ethanol-Blended Fuels

Blending fuels alters physical & chemical characteristics of original fuels:

- Visual difference of smoke & flame characteristics:
 - Higher content of ethanol, less visible black smoke content & orange flame production

Characteristics of

Ethanol-Blended Fuels

- Ethanol & gasoline are miscible, creating a homogeneous fuel blend
- Water contamination of ethanol gasoline fuel blends may cause phase separation:
 - Phase separation will introduce a water layer in the bottom that consists of water & ethanol
 - All hydrocarbon gasoline will remain in the top layer

Ethanol/ water solution (still flammable) Ethanol phasing away from hydrocarbon

F

Activity 3.1:

Comparison of Gasoline and Ethanol

Purpose:

 To allow participants to discuss the differences & similarities in the chemical & physical properties of ethanol & gasoline

Consideration for

Ethanol-Blended Fuel Fires

- Best practice is the use of alcohol resistant foam, AR-AFFF
- When phase separation of ethanol & gasoline occurs:
 - Gasoline layer floating on top will burn first
 - Ethanol water layer will burn next, flames and smoke may be diminished

Activity 3.2: Definitions

• Purpose:

To allow participants to identify the definitions related to ethanol & ethanol-blended fuels

Worksheet 3.2:

Definitions

- Ethanol
- Polar solvent
- Hydrocarbon
- Flash point
- Auto-ignition temperature
- Specific gravity
- Vapor pressure

- Vapor density
- Boiling point
- Flammable range
 - Upper explosive limit (UEL)
 - Lower explosive limit (LEL)
- Toxicity
- Flammable liquid

- Ethanol is a polar solvent, miscible with water, & flammable
- Higher content of ethanol means less visible black smoke, & orange flame production
- Best practice is the use of alcohol resistant foam
 AR-AFFF

